Analyzing the effect of temporal coherence on a phase-reconstruction method

בחינת השפעת קוהרנטיות זמנית על מערכת לשחזור פאזה

מספר פרויקט
311
סטטוס - הצעה
הצעה
אחראי אקדמי
שנה
2024

הרקע לפרויקט:

The iterative multi-plane optical properties extraction (IMOPE) technique was designed to study opaque material in a noninvasive manner. It uses spatially coherent illumination on the sample and extract the optical properties (mainly the reduced scattering coefficient but also the absorption coefficient) of the measured samples. To do so, the technique uses the Gerchberg-Saxton algorithm in a multi-plane version to reconstruct the phase. The root mean square of the phase is then calculated and from a comparison with the theoretical model the optical properties of the sample can be extracted. The technique was used for detection of milk components, blood flow and tissue viability, anti-leishmania nanoparticles, nanodiamonds in different skin layers and more.

מטרת הפרויקט:

In this project the laser will be modulated in accordance with the camera, and the effect on the phase analysis will be examined.

תכולת הפרויקט:

  1. Learn the theoretical fundamentals of the technique.
  2. Learn how to operate the optical system.
  3. Learn how to analyze the phase image.
  4. Modulate the laser in accordance with the camera.
  5. Prepare calibration samples.
  6. Measure and analyze the samples.

קורסי קדם:

מבוא לאלקטרואופטיקה

מקורות:

  1. C. Shapira, I. Yariv, R. Ankri et al., “Effect of optical magnification on the detection of the reduced scattering coefficient in the blue regime: theory and experiments,” Optics Express, 29(14), 22228-22239 (2021).
  2. C. Shapira, I. Yariv, H. Duadi et al., "Extracting the reduced scattering coefficient in different optical magnifications in the blue regime: theory and experiments." 11976, 18-25.
  3. I. Yariv, H. Duadi, R. Chakraborty et al., “Algorithm for in vivo detection of tissue type from multiple scattering light phase images,” Biomedical optics express, 10(6), 2909-2917 (2019).
  4. I. Yariv, H. Duadi, and D. Fixler, “Optical method to extract the reduced scattering coefficient from tissue: theory and experiments,” Opt. Lett., 43(21), 5299-5302 (2018).
  5. I. Yariv, H. Duadi, and D. Fixler, [An optical method to detect tissue scattering theory, experiments and biomedical applications] SPIE, 1089105-1-9 (2019).
  6. I. Yariv, H. Duadi, and D. Fixler, “Depth Scattering Characterization of Multi-Layer Turbid Media Based on Iterative Multi-Plane Reflectance Measurements,” IEEE Photonics Journal, 12(5), 1-13 (2020).
  7. I. Yariv, M. Haddad, H. Duadi et al., “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomed., 11, 5237-5244 (2016).
  8. I. Yariv, S. Kannan, Y. Harel et al., “Iterative optical technique for detecting anti-leishmania nanoparticles in mouse lesions,” Biomedical Optics Express, 12(7), 4496-4509 (2021).
  9. I. Yariv, Y. Kapp-Barnea, E. Genzel et al., “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics, 8(11-12), 979-984 (2015).
  10. I. Yariv, G. Rahamim, E. Shliselberg et al., “Detecting nanoparticles in tissue using an optical iterative technique,” Biomed. Opt. Express, 5(11), 3871-3881 (2014).
  11. I. Yariv, C. Shapira, H. Duadi et al., “Media characterization under scattering conditions by nanophotonics iterative multiplane spectroscopy measurements,” ACS omega, 4(10), 14301-14306 (2019).
  12. I. Yariv, C. Shapira, H. Duadi et al., "Spectroscopy measurements of opaque material by nanophotonics iterative multi-plane technique." 11254, 121-128.

תאריך עדכון אחרון : 31/07/2023