Deep learning technologies for studying tumor samples

שימוש בלמידה עמוקה כדי לנתח דוגמאות סרטניות

מספר פרויקט
111
סטטוס - הצעה
הצעה
אחראי אקדמי
שנה
2024

הרקע לפרויקט:

אחת הדרכים להתאים טיפולים לחולים בסרטן היא על ידי מיפוי מולקולרי רחב היקף בסופר רזולוציה של רקמות. עם זאת, ניתוח המידע מהווה אתגר מרכזי - איך אפשר לייצג ולנתח מידע מתמונות של מיליוני מולקולות כדי להחליט מה מצב התאים ברקמה הסרטנית? הפרויקט מנסה להתמודד עם האתגר הזה על ידי שיטות מעולם הלמידה העמוקה.

מטרת הפרויקט:

בפרויקט נשתמש במידע שהתקבל מטכנולוגיה מתקדמת במעבדה שלנו המאפשרת יצירת מפות תלת מימדיות של ביטוי הגנים ברקמה סרטנית.
כדי לנתח את המידע נפעיל אלגוריתמים של למידה עמוקה שישתמשו במיקום התוך תאי המדויק של מולקולות הרנ"א המוצגות במפות (תמונות) הנ"ל.

תכולת הפרויקט:

  • ניתוח מקדים של הנתונים: זיהוי התאים ברקמה ואיחוד נתונים ממקורות שונים ליצירת מאגר אחד.
  • היכרות מעמיקה עם אלגוריתמי למידה עמוקה.
  • כתיבת קוד פייתון הכולל מימוש של האלגוריתם הנבחר ובנוסף, יצירת שכבת נוירונים שיכולה להסביר את קבלת ההחלטות.
  • ניתוח הנתונים וזיהוי דפוסים של מצבי התאים במחלה.
  • סיכום התוצאות.

קורסי קדם:

  • כריית מידע וייצוג מידע – 83676
  • למידה עמוקה – 83882 (ניתן לבצע במקביל לפרויקט)
  • מדעי נתונים ביולוגים (ניתן לבצע במקביל לפרויקט, במקרים מסוימים יתכן פטור מקורס זה)

דרישות נוספות:

  • רקע בלמידת מכונה הוא חובה.
  • רקע בביולוגיה הוא יתרון.

מקורות:

  1. Elkan, C. The foundations of cost-sensitive learning. Proceedings of the Seventeenth International Conference on Artificial Intelligence: 4-10 August 2001; Seattle, 1, 05, 2001.
  2. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., and Kennedy,P. Training deep neural networks on imbalanced datasets. pp. 4368–4374, 07 2016. doi: 10.1109/IJCNN.2016.7727770.
  3. https://www.alonlab.org/technology

תאריך עדכון אחרון : 30/07/2023