Adaptation mechanism for resource constraint classification problem

מנגנון אדפטיבי לבעיות קלסיפיקציה עם אילוצי משאבים

מספר פרויקט
803
סטטוס - הצעה
הצעה
אחראי אקדמי
שנה
2024
מסלול משני

הרקע לפרויקט:

הפרויקט הינו חלק ממחקר שעוסק בשילוב בין בעיות של אילוצי משאבים אשר מקובל לפתור בכלים של חקר ביצועים, לבין בעיות סיווג אשר מקובל לפתור בשיטות של למידת מכונה. הדרך המקובלת לשלב בין שתי הבעיות הללו היא במודל דו-שלבי, שימוש בלמידת מכונה עבור בעיית הסיווג ועם התוצאות שהתקבלו לפתור את בעיית אילוצי המשאבים. במחקר אנו משלבים את בעיית אילוצי המשאבים בתהליך הלמידה של המודל שפותר את בעיית הסיווג בכדי לשפר את הביצועים. הפרויקט ישפר את שיטת היישום כך שיתאים לנתוני מבחן (test data-set) וכן יצמצם את מספר האיטרציות.

האלגוריתמים ייושמו וייבדקו על נתוני שרותי הכבאות – הבעיה ביישום זה היא הקצאה מיטבית של כוחות הצלה למספר ארועים שמתרחשים בו זמנית.

מטרת הפרויקט:

בפרויקט הסטודנטים יבצעו התאמה לנתוני מבחן (test data-set) של מודל אדפטיבי לשילוב למידת מכונה ובעיית אילוצים ביישום בפייתון על ידי שילוב האילוצים שקיימים על הTEST כחלק מתהליך הלמידה לעומת במצב הקיים בו נעשה שימוש רק ב TRAIN. בנוסף, הסטודנטים יפתחו שיטה לעדכון ערך סף כך שמספר האיטרציות עד להתכנסות המודל תצומצם וזמני הריצה יתקצרו.

האלגוריתמים ייושמו וייבדקו על נתוני שרותי הכבאות במטרה להגיע להקצאה מיטבית של כוחות הצלה למספר ארועים שמתרחשים בו זמנית.

תכולת הפרויקט:

פירוט של מטלות הסטודנטים בפרויקט

  1. פיתוח מתמטי תיאורטי לעדכון ערך הסף בין איטרציות.
  2. יישום בפייתון של התאמת המודל לשימוש בנתוני TEST בתהליך הלמידה והשוואה בין ביצועי האלגוריתמים כאשר האילוץ על ה TEST נלקח בחשבון לעומת המצב שבו האילוץ מוקרן על הTRAIN בהיבט של זמני ריצה וביצועים.
  3. יישום על נתוני שרות הכבאות.


קורסי קדם:

מבוא להסתברות וסטטיסטיקה, כריית מידע וויזואליזציה

דרישות נוספות:

נדרש ידע בפייתון

מקורות:

  1. An adaptive machine learning algorithm for the resource-constrained classification problem https://www.sciencedirect.com/science/article/pii/S095219762200731X
  2. The foundations of cost-sensitive learning https://cseweb.ucsd.edu//~elkan/rescale.pdf

תאריך עדכון אחרון : 31/07/2023