Learning to denoise without clean examples
למידת מסיר רעש ללא דוגמאות נקיות
מספר פרויקט
416
סטטוס - הצעה
הצעה
אחראי אקדמי
שנה
2025
מסלול
הרקע לפרויקט:
In this project we will explore methods to train a denoiser from unaligned noisy images. The deep learning approaches that have been proposed in the past years for training a denoiser without g.t. clean data do not exploit connection between mismatched images of the same object.
מטרת הפרויקט:
The goal of the project is to design a deep learning method for training a denoiser from unaligned noisy images that outperforms existing methods (which currently do not fully the information shared between such images).
תכולת הפרויקט:
- Exploring the performance of current methods when trained on unaligned noisy images (starting with noisy shifted versions) and identifying gaps.
- Proposing a mathematically-backed method for the problem at hand.
- Training a model that outperforms existing alternatives.
- Potentially: generalizing the idea from shifts to more general transformations.
קורסי קדם:
קורס מבוא ללמידת מכונה, הרשמה לקורס למידה עמוקה
מקורות:
* https://arxiv.org/abs/1803.01314
* https://arxiv.org/abs/1803.04189
תאריך עדכון אחרון : 30/09/2024