Activity Recognition for Medical Diagnosis– Old, Current and Future Technologies

שלחו לחבר
Gaddi Blumrosen
BIU Engineering Building 1103, Room 329

Motion and activity recognition and characterization, plays a major role in our life. Activity includes body’s daily life activities, body’s gestures, and its more wide sense also facial expressions. Accurate characterization of the activity, can contribute to well-being by assisting in fields like sport, and in medicine, where it enable detect abnormalities in human behavior, estimate medical score in diseases like Huntington, and Parkinson diseases, and enable continuous monitoring of medical condition. The advantages of automated medical diagnosis, while doing daily life activities are: 1) higher accuracy by applying advanced machine learning techniques and massive trained data, that can overcome human limitation and biases; 2)save patient time travel time to the clinic, clinician time, and minimize hospital resources; and 3) can be used to to optimize drag delivery. In this talk, we will review the current activity assessment methodologies, like inertial sensors and video, and will show new ways for seamless activity monitoring, achieved by deploying new sensing techniques, like radar, sonar, Kinect, and pressure sensors. We will further present advanced methods, that were tailored to the sensors, and can recognize the activity type, level, and estimate medical scores.