Blind Room Parameter Estimation Using Multiple Multichannel Speech Recordings
שיערוך פרמטרי החדר באמצעות הקלטות ממערך מיקרופונים
הרקע לפרויקט:
The problem of jointly estimating the total surface area, volume, frequency-dependent reverberation time, and mean surface absorption of a room in a blind manner is studied in this paper. This knowledge of the geometrical and acoustical parameters of a room can be beneficial for applications such as audio augmented reality, speech dereverberation, or audio forensics.The proposed approach utilizes two-channel noisy speech recordings from multiple unknown source-receiver positions.
The proposed model outperforms a recently proposed blind volume estimation method on the considered datasets.
מטרת הפרויקט:
The project focuses on leveraging two-channel noisy speech recordings from multiple unknown source-receiver positions. By developing a novel convolutional neural network architecture that utilizes both single and inter-channel cues, the goal is to accurately estimate the target parameters in a blind manner.
תכולת הפרויקט:
1. Watch the lectures in youtube - Stanford University CS231n, Spring 2017
2. Read the paper
3. Download the dataset
4. Build the model
5. Train the model
6. Expect to satisfactory results :))
The project will be implemented in Pytorch
קורסי קדם:
Deep Learing, Python and Pytorch
דרישות נוספות:
Watching related videos on YouTube
מקורות:
We will implement the following paper:
Blind Room Parameter Estimation Using Multiple Multichannel Speech Recordings
תאריך עדכון אחרון : 31/07/2023