Analysis of Biological Signatures Using Machine Learning
בחינת יחודיות וחזרתיות של חתימות ממדידות ביולוגיות\ביוכימיות בשימוש למידת מכונה
הרקע לפרויקט:
טכנולוגיות לבישות, המשולבות בגוף ובמערכות ביולוגיות כבר כאן, לרוב הן מתקשרות עם נקודת קצה קרובה (למשל סלולרי או אנטנה) וצריכת אנרגיה נמוכה, הינה קריטית עבור מערכות אלו. כמו כן, אבטחה היא גורם משמעותי היות ואינפורמציה רגישה נעה במערכות אלו (חשבו על מוניטור לחץ דם או משאבת אינסולין אקטיבית). לכן עלות האבטחה מבחינת מימוש ואנרגיה היא קריטית. בפרויקט הסטודנטים יקבלו מידע \ מדידות ממכשור מדידה המגיע ממדידות על גוף נסיינים בשיתוף עם תעשייה. המידע יגיע ממגוון סנסורים, time-series ממודד לחץ דם \ מודד זיעה\ מדידות אופטיות ואפילו אקוסטיות.
הסטודנטים יפעילו כלי אנליזה מעולם הסיווג ולימוד המכונה ומטרתם תהיה אפיון ומציאת פיטשרים ייחודיים וחזרתיים מכל ערוץ ובניית ensemble ליצירת חתימה ביולוגית למשתמש. על גבי מנגנון זה ניתן ליישם אבטחה זולה הרבה יותר למערכות אלו.
זהו פרויקט המשך שבו הראנו יישימות. בפרויקט הזה נשפר את האנליזה והניתוח ובנוסף נוסיף מנגנון ייחודי לייצר מדידות \ חתמיות "דטרמניסטיות" ולא רועשות ממדידות רועשות על מנגנון FUZZY EXTRACTOR, בנוסף ללמידת המכונה והקלסיפיקציה.
מטרת הפרויקט:
מימוש מערכת עובדת מלאה והדגמה עם דאטה בייס גדול ומשמעותי
תכולת הפרויקט:
הסטודנטים יקראו וילמדו שיטות ניתוח של ספרות קודמת. ילמדו את צורת המידע והדאטה שמגיע מהמדידות. ינתחו מאפיינים שלו ויבנו ויאמנו מספר מכונות קלסיפיקציה ולוגיקה של FUZZY EXTRACTOR. ינתחו יכולת לשלב מדדים שונים מדאטה בייסים שונים, ייבנו מודלים "משכללים" ומאחדים. ולבסוף יבצעו בחינת אומדנים לייחודיות וחזרתיות של ה"חתימות הביולוגיות" ויכולות הקלסיפיקציה.
קורסי קדם:
כל קורס קודם המספק ידע בנושאים:
ידע קודם בסיסי בלמידת מכונה \ קלסיפיקציה \ רגרסיה
ייתרון לסטודנטים בעלי שליטה בבניית מודלים בפייטון (או מטלב), למשל עצים, Random-Forest, ensembles, ANN \ CNN RNN\ DNN
דרישות נוספות:
הבנה של קודים לתיקון שגיאות ייתרון (אך לא חובה)
יכולות תכנותיות ואנליטיות גבוהות.
נכונות להיקף עבודה משמעותי.
מקורות:
- Jain, Anil K., Arun Ross, and Salil Prabhakar. "An introduction to biometric recognition." IEEE Transactions on circuits and systems for video technology 14.1 (2004): 4-20.
- McGoldrick, Leif K., and Jan Halámek. "Recent advances in noninvasive biosensors for forensics, biometrics, and cybersecurity." Sensors 20.21 (2020): 5974.
- Hair, Mindy E., et al. "Metabolite biometrics for the differentiation of individuals." Analytical chemistry 90.8 (2018): 5322-5328.
- https://ranger.uta.edu/~mingli/publications/Pairing.pdf
תאריך עדכון אחרון : 30/09/2024