Tradeoffs in restoration problems
תופעות טרייד-אוף בבעיות שחזור
הרקע לפרויקט:
Restoration algorithms are oftentimes evaluated by different criteria. For example, we may want a restored image to be both accurate (low distortion) and perceptually pleasing (as if it is a natural image). A seminal paper have shown that there is a tradeoff between these properties. In this project we will study extensions of this phenomenon. Primarily, we will explore tradeoffs between low-level tasks (e.g., restoring an image with low distortion) and high-level tasks (classifying the restored image).
מטרת הפרויקט:
The goal of this project is to identify and explore (empirically and theoretically) tradeoffs between low-level restoration and high-level tasks.
תכולת הפרויקט:
- Understanding known tradeoffs (e.g., perception-distortion) and techniques to explore them (convex optimization, rate-distortion theory).
- Examining if they can be sharpened.
- Identifying tradeoffs between low-level restoration and high-level tasks (e.g., classification).
- Empirical and theoretical analysis.
קורסי קדם:
קורס מבוא ללמידת מכונה, עדיפות לרישום לקורסים שערוך פרמטרים ולמידה עמוקה
מקורות:
https://arxiv.org/abs/1711.06077
תאריך עדכון אחרון : 30/09/2024